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Abstract

In this paper we present a technique to improve t
calibration of a colorimetric scanner by employing an affin
model in conjunction with non-linear least squares fitting.

In the affine model, the transformation from imag
RGB values to CIE XYZ values is specified as 
multiplication with a 3x3 matrix, Ms, followed by the
addition of a constant vector, K. This model allows one to
first transform the image RGB values to CIE XYZ value
under a specified illuminant and then to convert these XY
values to the appropriate RGB or CMYK values for viewin
on different output devices. The precise values of the entr
in the matrix Ms and vector K are determined through a non
linear least squares procedure, in which the total CIE ∆E
between the ideal XYZ and predicted XYZ values of 
calibration chart is minimized.

We interpret the role of the constant term K to be a
subtraction of the white of the illuminating source.
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Introduction

A requirement in today's world of digital scanning is that th
scanned image needs to be repurposed for display o
variety of monitors and printers, and this must satisfy th
dual criteria of accurate as well as aesthetically pleasi
color reproduction.

One feasible solution is to first transform the imag
RGB values to CIE XYZ values under a specifie
illuminant and then to convert these XYZ values to th
appropriate RGB values for viewing on different outpu
devices. Different image (scanner) whites are preferred 
viewers depending on the output device. Thus the b
solution is to convert on the fly the scanned image RGB
values to the XYZ values under the illuminant that i
representative of the display white point. Hence, we see
conversion from image RGB to XYZ that is fast, accura
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and imposes minimal additional overhead (no specia
hardware, or increased storage/memory).

Methods

We solve this problem by modifying the conventiona
representation

X

Y

Z

 

 

 
 

 

 

 
 

= M s

R

G

B

 

 

 
 

 

 

 
 

    (1)

where Ms is a 3x3 scanner matrix, and provides a linea
mapping between RGB and XYZ values.

The simplest extension to the above model is to make
affine instead of linear through the addition of a constan
term.
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where k = (k1; k2; k3) may be viewed as a bias term.
The parameters comprising M s and k can be determined

if we have sufficient sample measurements for the corr
sponding XYZ and RGB values. There are several technique
available to estimate these parameters. One technique is
use linear regression, and then calculate the color errors t
result from the transformation [3].* An alternative is to
formulate this as an optimization problem where the co
function is the total CIE ∆E over all the samples, and the
optimal M s and k are those that minimize this cost function.

For a given sample i, we can use equation 2 to express
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where Xi, Yi and Zi are the XYZ values for the ith sample
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predicted by the model from the RGB values for that
sample.

Let Xw, Yw and Zw be the XYZ coordinates of the white
point of the scanner (e.g. the XYZ values for D50). Then Xi,
Yi and Zi can be transformed into L*a*b*  values using the
well known equations [6, pg.167].

Let XSi, YSi and ZSi be the ideal, spectrally measured XYZ
values for the ith sample as measured by a spectrometer. W
can obtain the ideal L*a*b*  values using the above
equations. The difference is calculated using ∆L* i = L* Si –
L* i, ∆a* i = a* Si – a* i, and ∆b* i = b* Si – b* i.

The CIE metric for the color difference is

       
∆Ei =

∆L* i
2

4
+ ∆a* i

2 +∆b* i
2

       (4)

The objective function that we seek to minimize is

      S = • ∆Ei                     (5)

over all the samples in the test chart.

Results

This optimization problem was solved using MATLAB on
an IBM-RS/6000 platform running AIX. Specifically, the
function leastsq from the Optimization toolbox was use
with the Levenberg-Marquardt method. The starting guess
obtained by setting M s to be the solution to the linear least
squares problem (ie without the constant term) and b
setting the vector k to zero.†

We used a Kodak-Q60 IT-8 color test chart. Th
Gretag Spectroscan instrument [1] was used to meausure
spectral re ectance of the samples in this chart. T
illuminant was D50. These can be converted to XYZ value
by integrating the product of the spectral reflectance, th
spectral distribution of the light (for D50), and the CIE
x y z, , functions. The IBM TDI/Pro 3000 colorimetric
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scanner described in [4] was used to measure th
corresponding RGB values.

The result of the optimization is given below:

   

M s =
1.0676 −0.2307 0.1355
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and

k =
−16.8750

−15.0017

−11.1541
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We obtained an average ∆E = 1.6212 and maximum ∆E
= 4.549 over the same Kodak Q60 chart. In order to test t
performance of our method, we measured and scanned
mini-Macbeth chart using the same Gretag instrument an
scanner. The above values of Ms and k were used to predict
the X Y Z values. We obtained an average ∆E = 1.7910 and
maximum ∆E = 5.43.

We compared these results with a linear least squar
solution, which resulted in

    

M s =
1.1998 −0.4140 0.1873

0.2059 0.7289 0.0775

0.0450 −0.0246 0.7999
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We obtained an average ∆E = 2.332 and maximum ∆E
= 11.945 over the same Kodak Q60 chart. On the min
Macbeth chart we obtained an average ∆E = 2.458 and
maximum ∆E = 6.72.

The chromaticity plot for the Kodak Q60 chart is shown
in Figure 1.

The histogram plots of ∆E for the Kodak Q60 chart is
shown in Figure 2.
Figure 1. CIE xy chromaticity plots for measurements made on the Kodak Q60-IT8 test chart. (a) is for linear least squares, and (b) is for
non-linear least squares.
9
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Figure 2. Histogram for ∆E values measured on the Kodak Q60-IT8 test chart. (a) is for linear least squares, and (b) is for non-linea
squares.
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Discussion

By using the affine model with non-linear least squar
fitting, the average ∆E is lowered by 27% and the
maximum ∆E is lowered by 19.6% for the mini-Macbeth
chart, and the corresponding values for the Kodak Q60 ch
are 30% and 38% respectively. These are significa
reductions in the error.

The interpretation we offer for the constant term k is
that it represents the white of the illuminating sourc
Indeed, if we display the constant term k from equation 7 on
a calibrated monitor, the color appears pinkish, that of t
illuminant D50 used to generate the ideal X Y Z values.
Furthermore, if we change the illuminating source from D5
to D45, D55, D60, and D65, and redo the entire calibrati
calculations, the locus of chromaticity coordinates of th
constant k follows the locus of the illuminants.

Thus, the color correction that is applied due to th
constant term k can be viewed as a subtraction of white.

Conclusion

The solution we have proposed does demonstrably be
than linear least squares, with only three addition
subtractions per pixel, and no additional storage/memo
requirements. Though we can use other techniques suc
neural networks [5, 2] or LUTs, they impose addition
computational overhead at the time of conversion of RGB
XYZ. The size of the LUTs needs to be either very large, 
interpolation must be done on the fly for every pixel value.

Thus we have provided a model that does better th
linear least squares with the smallest overhead 
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repurposing the image. We also provided a physic
justification for the terms appearing in our model.

* Note that during the regression step, no explicit ∆E
measurements are made.

† We varied the initial guess and found it did not change t
solution to the optimization problem.
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